

Micro Services
Sebastian Mancke

Creative Commons BY-SA 3.0

23.08.14 2

Monolythic Software

Why are monolythic systems 'evil' ?

Because of their dependencies:

● Software is not easy to test
● And hard to refactor
● Effects of changes can not be isolated
● Working with multiple developers/teams is challenging
● No reuse of functionality
● Runtime and deployment dependencies:

● Performance and scaling
● Deployment of features and releases

23.08.14 3

Avoid a Monolyth

Monolyths arise from bad design,

independent of the technology!

● You can build a monolyth with every software framework.
● Even distributed systems with a lot of services can be monolythic.
● And even software with monolythic builds and deployments may have a

good internal structure.

So, chosing a popular micro services framework is not enough!

23.08.14 4

Think Vertical!

Split the application in functional modules

Maximal reduction of dependencies

between different functional parts

Vertical teams (End-to-End)

23.08.14 5

Classical Approach

GUI -Layer

Services

Database/Persistance

23.08.14 6

SOA Approach

GUI -Layer

Business
Service

DB

Business Service
Business
Service

Persistence
Service

DB

Persistence
Service

DB

Persistence
Service

DB

Persistence
Service

DB

Persistence
Service

23.08.14 7

The Micro Services Way...

GUI

Service

DB

GUI

Service

DB

GUI

Service

DB

GUI

Service

DB

23.08.14 8

Shop Example

Micro Services

23.08.14 10

Micro Services Principles 1/2

Small with a single responsibility

• Each application only does one thing

• Small enough to fit in your head

– “If a service is bigger than your head, than it is too big”

• Small enough that you can throw them away

– Rewrite or Maintain

by James Lewis:

23.08.14 11

Micro Services Principles 2/2

by James Lewis:

Located in different VCS roots

• Each application is completely seperate

• Domain Driven Design / Conway’s law

– Domains in different bounded contexts shoud be distinct -

and it is ok to have duplication

– Use physical separation to enforce this

• There will be common code, but it should be library and

infrastructure code

– Treat it as you would any other open source library

– Stick it in a nexus repo somewhere and treat it as a binary

dependency

23.08.14 12

Implementation

No application servers
● Every service runs in it's own process
● Every service brings it's own environment

Choose the right stack for the requirements
● 1 monolyth 1 stack, 100 Micro Services flexibility→ →
● Free choice of: OS, language, framework, database, ..
● But: Be careful!

New feature, new service?
● At first check, if a feature should build a new functional module
● Only in the second step extend an existing service
● Rule: Merging services is easy, splitting is hard!

23.08.14 13

Java Frameworks

● Spring Boot
● Dropwizard
● Vert.x

23.08.14 14

Database

Design goal:

Every service should have it's own exclusive database

Strategies
● NoSQL / document oriented design
● Treat foreign keys as REST URI references
● When a service needs external data: Call a service
● Don't fear data redundancy
● Replication of data: Pulling feeds with changelogs

Tradeoff solutions
● Multiple schemas within the same database
● Read-only views for data of other services
● Use DB features for replication (e.g. database link)

23.08.14 15

UI

Design goal:

Services should provide their UI themselves

Strategies
● Every service serves the full page, including layout and menu bar
● Commitment on one CSS naming schema
● Central asset service (menu, styles, common resources)
● Single page apps only within one service
● GUI composition only on the client (in the browser)
● Use UI fragments / widgets when embedding data of another service

23.08.14 16

Security

Problem: The security context is spread over 100 services

Solution: Identity Management System
● Identity Management is also a service module (or even multiple)

● Service for management of identities
● Service for login/logout
● Service for self administration

● OAuth2 allows distribution of the login to different services

23.08.14 17

Login implementations

Variant a: Shared Cookie
● All services are available under the same domain
● The login service creates a cookie available to all others

● Username, timestamp, rolles/permissions
● Crypted and signed

● All services can verify the cookie by checking the signature

Variant b: Independent Applications
● Every service maintains it's own session
● Login is done by OAuth2

● Double redirect
● Token exchange

● The login service maintains a sessions as well
● Multiple logins are done transparent to the user

23.08.14 18

OSIAM

https://github.com/osiam/

23.08.14 19

Communication

Everything is allowed

But: You should establish one standard for your platform.

Principles
● Loose coupling – services should not know about each other
● Smart endpoints, dump pipes

● No intelligence in the communication channel
● No ESB

REST is a good choice for many scenarios
● Easy consumable with all languages
● Interfaces are maintainable towards compatibility
● URI references are helpful for navigation to different services and

abstraction of the physical location of resources.

23.08.14 20

Communication– further principles

Asynchronous Messaging
● Reliable event distribution
● High performance
● Load protection of critical services

Resilience
● Tolerance against failures
● Error recovery
● Avoid error cascades

API Versioning
● Don't do it for internal APIs!

23.08.14 21

Testing

Unit Tests
● Integration tests suffice in many cases because the services are small
● Test the isolated service (Other services should be mocked)

Consumer Driven Tests

Idea: The integration tests of a service will be defined and implemented by the
consumer (not by the service provider).

No release before the service passes all consumer's tests
● Test with the real expectations, not with the service specification
● Very smart concept, but hard to maintain
● Has the risk of high test-redundancy for common APIs

23.08.14 22

Deployment

Contiuous Delivery
● Create a deployment pipeline
● Need to automate everything

One monolyth may be easy to deploy, 100 Micro Services may not!

Packaging & Provisioning
● Usage of established standards: DEB, RPM, …
● Robust init scripts
● Configuration management: Puppet, Chef, ...

23.08.14 23

Deployment as platform

1 Micro Service : 1 Linux System

Docker
● LXC based virtualisation
● Similar to changeroot (but a lot better!)
● Slim and fast
● Based on git, so changes of the images can be tracked

For Hardliners
● Install the Micro Service by shipping and starting the system image
● No packaging
● No init scripts

23.08.14 24

Monitoring

Realtime metrics
● Monitor, what currently happens
● Fast reaction to problems
● Do monitoring inside the application, not outside
● Tools: Metrics, Spring Boot Actuator

Logging
● Manual search in logs of 100 services is not possible
● Central log aggregation
● Filtering and analyses in realtime
● Tools: Logstash, Graylog2, Kibana, Apache Flume, fluentd

23.08.14 25

Risks

Micro Services are a promising paradigm

But, you should always be careful with new paradigms!

● Inventarisation of many services
● Challenging for operations
● High network load (if not done right)
● New way of thinking
● The freedom of technology selection may lead to chaos,

if it is no governance

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

