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Monolythic Software

Why are monolythic systems 'evil' ?

Because of their dependencies:

● Software is not easy to test
● And hard to refactor
● Effects of changes can not be isolated
● Working with multiple developers/teams is challenging
● No reuse of functionality
● Runtime and deployment dependencies:

● Performance and scaling
● Deployment of features and releases
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Avoid a Monolyth

Monolyths arise from bad design,

independent of the technology!

● You can build a monolyth with every software framework.
● Even distributed systems with a lot of services can be monolythic.
● And even software with monolythic builds and deployments may have a 

good internal structure.

So, chosing a popular micro services framework is not enough!
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Think Vertical!

Split the application in functional modules

Maximal reduction of dependencies 

between different functional parts

Vertical teams (End-to-End)
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Classical Approach
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SOA Approach
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The Micro Services Way...
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Shop Example



Micro Services
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Micro Services Principles 1/2

Small with a single responsibility

• Each application only does one thing

• Small enough to fit in your head

– “If a service is bigger than your head, than it is too big”

• Small enough that you can throw them away

– Rewrite or Maintain

by James Lewis:
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Micro Services Principles 2/2

by James Lewis:

Located in different VCS roots

• Each application is completely seperate

• Domain Driven Design / Conway’s law

– Domains in different bounded contexts shoud be distinct - 

and it is ok to have duplication

– Use physical separation to enforce this

• There will be common code, but it should be library and 

infrastructure code

– Treat it as you would any other open source library

– Stick it in a nexus repo somewhere and treat it as a binary 

dependency 
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Implementation

No application servers
● Every service runs in it's own process
● Every service brings it's own environment

Choose the right stack for the requirements
● 1 monolyth  1 stack, 100 Micro Services  flexibility→ →
● Free choice of: OS, language, framework, database, ..
● But: Be careful!

New feature, new service?
● At first check, if a feature should build a new functional module
● Only in the second step extend an existing service
● Rule: Merging services is easy, splitting is hard!



 

23.08.14 13

Java Frameworks

● Spring Boot
● Dropwizard
● Vert.x
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Database

Design goal:

Every service should have it's own exclusive database

Strategies
● NoSQL / document oriented design
● Treat foreign keys as REST URI references
● When a service needs external data: Call a service
● Don't fear data redundancy
● Replication of data: Pulling feeds with changelogs

Tradeoff solutions
● Multiple schemas within the same database
● Read-only views for data of other services
● Use DB features for replication (e.g. database link)
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UI

Design goal:

Services should provide their UI themselves

Strategies
● Every service serves the full page, including layout and menu bar
● Commitment on one CSS naming schema
● Central asset service (menu, styles, common resources)
● Single page apps only within one service
● GUI composition only on the client (in the browser)
● Use UI fragments / widgets when embedding data of another service
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Security

Problem: The security context is spread over 100 services

Solution: Identity Management System
● Identity Management is also a service module (or even multiple)

● Service for management of identities
● Service for login/logout
● Service for self administration

● OAuth2 allows distribution of the login to different services
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Login implementations

Variant a: Shared Cookie
● All services are available under the same domain
● The login service creates a cookie available to all others

● Username, timestamp, rolles/permissions
● Crypted and signed

● All services can verify the cookie by checking the signature

Variant b: Independent Applications
● Every service maintains it's own session
● Login is done by OAuth2

● Double redirect
● Token exchange

● The login service maintains a sessions as well
● Multiple logins are done transparent to the user
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OSIAM

https://github.com/osiam/
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Communication

Everything is allowed

But: You should establish one standard for your platform.

Principles
● Loose coupling – services should not know about each other
● Smart endpoints, dump pipes 

● No intelligence in the communication channel
● No ESB

REST is a good choice for many scenarios
● Easy consumable with all languages
● Interfaces are maintainable towards compatibility
● URI references are helpful for navigation to different services and 

abstraction of the physical location of resources.
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Communication– further principles

Asynchronous Messaging
● Reliable event distribution
● High performance
● Load protection of critical services

Resilience
● Tolerance against failures
● Error recovery
● Avoid error cascades

API Versioning
● Don't do it for internal APIs!
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Testing

Unit Tests
● Integration tests suffice in many cases because the services are small
● Test the isolated service (Other services should be mocked)

Consumer Driven Tests

Idea: The integration tests of a service will be defined and implemented by the 
consumer (not by the service provider).

No release before the service passes all consumer's tests
● Test with the real expectations, not with the service specification
● Very smart concept, but hard to maintain
● Has the risk of high test-redundancy for common APIs
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Deployment

Contiuous Delivery
● Create a deployment pipeline
● Need to automate everything

One monolyth may be easy to deploy, 100 Micro Services may not!

Packaging & Provisioning
● Usage of established standards: DEB, RPM, …
● Robust init scripts
● Configuration management: Puppet, Chef, ...
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Deployment as platform

1 Micro Service : 1 Linux System

Docker
● LXC based virtualisation
● Similar to changeroot (but a lot better!)
● Slim and fast
● Based on git, so changes of the images can be tracked

For Hardliners
● Install the Micro Service by shipping and starting the system image
● No packaging
● No init scripts
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Monitoring

Realtime metrics
● Monitor, what currently happens
● Fast reaction to problems
● Do monitoring inside the application, not outside
● Tools: Metrics, Spring Boot Actuator

Logging
● Manual search in logs of 100 services is not possible
● Central log aggregation
● Filtering and analyses in realtime
● Tools: Logstash, Graylog2, Kibana, Apache Flume, fluentd
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Risks

Micro Services are a promising paradigm

But, you should always be careful with new paradigms!

● Inventarisation of many services
● Challenging for operations
● High network load (if not done right)
● New way of thinking
● The freedom of technology selection may lead to chaos,

if it is no governance



  

 

Thank You!
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